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ABSTRACT: Optically active artificial structures have attracted tremendous research
attention. Such structures must meet two requirements: Lack of spatial inversion symmetries
and, a condition usually not explicitly considered, the structure shall preserve the helicity of
light, which implies that there must be a vanishing coupling between the states of opposite
polarization handedness among incident and scattered plane waves. Here, we put forward
and demonstrate that a unit cell made from chiraly arranged electromagnetically dual
scatterers serves exactly this purpose. We prove this by demonstrating optical activity of such
unit cell in general scattering directions.
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Research on optical activity started with the works of
Arago,1 Biot,2 and Pasteur,3 who studied the rotation of

the polarization of light upon propagation through some
crystals and molecular solutions. Pasteur identified the absence
of mirror planes of symmetry of the molecule as a necessary
condition for optical activity. Optical activity is nowadays a vast
field of fundamental and applied research across physics,
chemistry, and biology.4−8

The ability of some natural systems to rotate the polarization
of light has been artificially reproduced in two-dimensional
planar arrays of strongly scattering unit cells.9−11 There, the
polarization of a normally incident field is rotated in
transmission, the forward scattering direction of the system.
To observe this effect, the array must lack reflection symmetry
across all planes perpendicular to it. Research in artificial optical
activity in nonforward scattering directions has shown that,
even though the systems also break the necessary spatial
inversion symmetries, the resulting transformation of the
polarization is qualitatively different from the one obtained in
the forward direction.12,13 The difference is that, in the forward
direction, a linearly polarized field has its polarization rotated
by a constant angle, independent of the incident polarization
angle. In nonforward scattering, however, the amount of
rotation depends explicitly on the angle of the incident linear
polarization (ref 12, Figure 2, and ref 13, Figure 5). Such kind
of polarization transformation does not meet the definition of
optical activity in terms of circular birefringence (ref 14, sec. 1,
and ref 4, Chapter 1.2). This definition includes the possibility

of different absorption of the two circular polarization
handedness (circular dichroism) and, therefore, allows the
output polarization to become elliptical. Nonetheless, this
ellipse must rotate in a consistent manner as the incident
polarization angle changes: The output ellipticity and the
relative rotation angle of its major axis shall be independent of
the incident polarization angle.
The explanation for the observed qualitative difference

between the forward and nonforward directions is that,
contrary to what is often stated,4,15,16 breaking spatial inversion
symmetries is not the only necessary condition for optical
activity.17 Besides breaking spatial inversion symmetries, optical
activity also requires, as an additional condition, that polar-
ization handedness be preserved in the scattering process. This
means that the coupling between incident and scattered
components of different polarization handedness must be
zero. This requirement is in addition to the lack of mirror
symmetry across the scattering plane and is the necessary and
sufficient condition for the output rotation angle and ellipticity
to be independent of the incident linear polarization angle (see
ref 17 and the Supporting Information of this article).
The coupling between different polarization handedness can

be discussed within the framework of symmetries and
conservation laws by means of the helicity of the field.18,19

For a plane wave, helicity can be defined as the polarization
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handedness with respect to its momentum vector. The forward
scattering direction is special in the sense that helicity
preservation can be achieved by purely geometrical means
with scatterers possessing discrete rotational symmetry with a
degree higher than two.20−23 In particular, the disorder induced
effective cylindrical symmetry of a solution of randomly
oriented chiral molecules ensures helicity preservation and,
together with the inherent chirality of the molecules, allows
optical activity in the forward direction. This geometrical
helicity preservation is achieved in the forward scattering of
planar arrays with 4-fold9−11,24 and 3-fold23 rotational
symmetry.
The arguments that lead to this geometrical helicity

preservation involve the angular momentum of the plane
waves and rely on the fact that the incident and scattered
directions share the same axis. These arguments do not apply to
a general scattering direction,22 and the components of
different polarization handedness will usually mix in non-
forward scattering. This explains why a chiral system does not
generally exhibit optical activity in nonforward directions: It
does not generally meet the second necessary condition.
However, there is at least one way to achieve helicity
preservation also in general nonforward directions, and, as far
as we know, it is the only way. In the same fundamental sense
in which rotational symmetry of the scatterer ensures the
preservation of angular momentum, electromagnetic duality
symmetry of the scatterer ensures helicity preservation in all
directions.
Chiral and dual objects break all mirror planes of symmetry

(due to chirality) and preserve helicity for all incident/scattered
plane waves (due to duality symmetry). They are hence
appropriate for achieving optical activity in general scattering
directions. In general, a chiral and dual object will exhibit
different amounts of polarization rotation for different pairs of
incident/scattered directions, while meeting the definition of
optical activity for each pair. This is consistent with the fact
that, as far as we know, there is no reason to expect a constant
rotation angle in the general case.

■ OUTLINE
In this article, we incorporate the requirement of helicity
preservation into the design of artificial optical activity in
general scattering directions and address it through the duality
symmetry properties of the scatterer. To such end we employ
appropriately chosen small dielectric spheres. While their
materials are not dual symmetric according to the macroscopic
Maxwell’s equations,18 the electromagnetically small spheres are
dual symmetric in the dipolar approximation for a carefully
chosen set of parameters at a given design wavelength,26 and
allow us to meet the design requirement up to good
approximation. We show that a wavelength-sized chiral
structure composed of four different dipolarly dual spheres
exhibits optical activity in general scattering directions.
Motivated by what is feasible with self-assembly nanofabrication
technologies,27−29 we have chosen for the chiral structure a
tetrahedral arrangement.30 Other chiral compositions can be
considered as well, like for example helical arrangements of
nanoparticles that can also be fabricated with self-assembly
techniques.31,32 The dipolarly dual spheres are dielectric
particles with high refractive index. Such particles are
increasingly being considered as building blocks for optical
antennas, metamaterials, and, in general, field manipulation
devices.33−36 This is promoted by their negligible absorption

and their ability to sustain Mie-type resonances, enabling strong
light−matter interaction and, in particular, a notable electric
and magnetic dipolar response.36−39

We compare the optical activity properties of the chosen
structure to those of two other chiral tetrahedral structures:
One made with (ideal) dual symmetric materials and another
one made with spheres whose parameters set them away from
the condition of dipolar duality. The comparison illustrates the
importance of duality symmetry in optical activity.
The article is structured as follows. In the next section we

explain the design in detail and specify the candidate structure.
We also specify two other structures that are used for
comparison purposes. In the following section, we outline a
general methodology for the analysis of the optical activity
properties of a scatterer. We apply the methodology to the
three structures and discuss the results. We finish with the
conclusion. In this article, the electromagnetic responses of the
structures are calculated through rigorous techniques which
allow to compute their scattering matrices to an arbitrary
multipolar order.40−43 We use order nine, which provides
sufficient convergence, and renders our analysis and con-
clusions valid up to the approximations inherent in the
macroscopic Maxwell’s equations.

■ DESIGN OF OPTICAL ACTIVITY IN GENERAL
SCATTERING DIRECTIONS

We set out to design a structure exhibiting optical activity for
general pairs of incident and scattered directions, e.g. in
nonforward scattering. Let us consider an arbitrary pair of
incident/scattered directions labeled by the momentum vector
of their corresponding plane waves p/p̅ (see Figure 1). A
necessary condition for the polarization of p̅ to be a rotated
version of that of p (in the sense of Figure 1b) is that the
scatterer lacks mirror reflection symmetry across the scattering
plane, that is, across the plane defined by the two vectors p and
p̅. A short proof of this intuitive result can be found in ref 17. If
the two momentum vectors are parallel (p = p̅, forward
scattering), the scatterer must lack reflection symmetry across
all the planes containing them, as is the case for the arrays in
refs 9−11. Since we want to achieve optical activity in general
scattering directions, we choose the structure to be chiral,
ensuring the breaking of all mirror planes of symmetry. The
additional requirement of helicity preservation is addressed
through the duality symmetry properties of the scatterer. A
scatterer is said to be dual symmetric if its electromagnetic
response is invariant under the electromagnetic duality
transformation. Duality acts on the electric (E) and magnetic
(H) fields (ref 25, eq 6.151):

θ θ

θ θ

→ = −

→ = +
θ

θ

Z

Z Z Z

E E E H

H H E H

cos sin ,

sin cos (1)

where θ is an arbitrary real angle and Z is a reference
impedance.
Dual symmetric scatterers preserve helicity for all p/p̅. The

Supporting Information contains a brief introduction to helicity
and duality. Their use in light−matter interaction problems is
discussed in detail in ref 19.
Nondual symmetric scatterers change the helicity of the field

interacting with them. We now introduce a measure of helicity
change (duality breaking) for an arbitrary object. To this end,
we consider the scattering matrix of the object expressed in a
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basis of electromagnetic modes with helicity as the polarization
index (λ = ±1). The other labels needed to identify each basis
mode are lumped into a collective index η. (The contents of η
depend on the further choice of basis. For example, η contains
the three components of momentum for plane waves of well-
defined helicity, or, the frequency, total angular momentum and
angular momentum for multipolar fields of well-defined

helicity.) The scattering coefficient η λ
η λ̅ ̅s ,

, is then the component

of the scattered field in the η λ̅ ̅( , ) mode resulting from the
interaction of the object with an incident (η,λ) mode. We
define the relative helicity change D̷ as the ratio between the
sum of the modulus square of all the helicity flipping scattering
coefficients and the sum of the modulus square of all the
scattering coefficients:

̷ =
∑ ∑ ∑ | |

∑ ∑ ∑ | | + | |
η η λ η λ

η λ

η η λ η λ
η λ

η λ
η λ

=±
̅ −

=±
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D
s

s s
1 ,

, 2

1 ,
, 2

,
, 2

(2)

Note that the symbolic sums in η and η ̅ may contain integrals
for continuous labels like linear momentum and sums for
discrete labels like angular momentum.
The measure defined in eq 2 ranges from 0 to 1. Zero

corresponds to complete helicity preservation (i.e., duality
symmetry of the scatterer) and 1 to a scatterer that completely
flips the helicity of the incident field. Importantly, D̷ is basis
independent.
In the context of the macroscopic Maxwell’s equations, a

scatterer made of a material characterized by relative electric
permittivity and magnetic permeability (ϵs,μs) embedded in a
background with material properties (ϵ,μ) has duality
symmetry and, therefore, preserves helicity (D̷ = 0), if and
only if18

μ μ
ϵ

= ϵs

s (3)

For optical activity, it would be desirable to build a chiral
structure with materials meeting eq 3. The problem is that
these kind of materials can be obtained for radio
frequencies,44,45 but not for other frequency ranges like the
optical one. While dual symmetric materials are not available
for most frequencies, the situation is different for small
scatterers in the dipolar approximation. A small scatterer is
considered “dipolar” if its response to an electromagnetic field
can be described to good approximation by just the electric d
and magnetic m dipole moments induced by the incident field
(E(r0),H(r0)) at the position r0 of the small scatterer. For a
dipolar scatterer to be dual symmetric, that is, to preserve the
helicity of the incident field, its polarizability tensor P
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must meet46

μ
= = ϵ = = = −

=α α α
α

,dE mH mE
dH

(5)

When a field of well-defined helicity, that is, which has zero
content of one of the two helicities, interacts with a dipolar
object whose response meets eq 5, the induced electric and
magnetic dipoles have a fixed relationship

= ± i
c

d m
(6)

where the ± corresponds to the two possible helicities of the
incident field. It can be shown that the combined field radiated
by the induced dipoles is of well-defined helicity and equal to
the one of the incident field.46 Therefore, when the incident
field contains the two helicities, the interaction with such a
scatterer does not couple them.
There are realistic scatterers that meet eq 5 even at

microwave47 and optical frequencies.37 In these works, properly
designed dielectric spheres and cylinders have been empirically
shown to exhibit zero backscattering, which is achieved by dual
symmetric objects with discrete rotational symmetries of degree
higher than two.22 The duality properties of dielectric spheres
have been studied by Zambrana-Puyalto et al. in ref 26. Their
work shows that, by adequately choosing its radius r and
relative electric permittivity ϵs, a dielectric sphere can be made
dual symmetric in the dipolar approximation 5. For a sphere,
the polarizability tensor is completely determined by the

Figure 1. (a) An object scatters an incident plane wave (continuous
arrow) into many scattered plane waves (dashed arrows). Optical
activity for two arbitrary scattering directions like p/p̅ implies a
polarization transformation of the kind illustrated in panel (b). (b)
Upon scattering, the incident linear polarization turns into elliptical
polarization with ellipticity η ̅

p
p and main axis rotated by an angle β ̅

p
p

with respect to the input polarization angle αp. As αp varies, both β ̅
p
p

and η ̅
p
p stay constant. This constant behavior is only achieved when the

scatterer does not couple states of different polarization handedness
(helicity). This necessary condition for optical activity is in addition to
the required lack of mirror reflection symmetry of the scatterer across
the plane(s) containing p and p̅. The preservation of helicity can be
achieved by geometrical means if p = p̅ (forward scattering). For the
general case, electromagnetic duality symmetry of the scatterer ensures
that helicity is preserved for all p/p̅.
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dimensionless Mie scattering coefficients (see, e.g., ref 48,
Chapter 3.4), and dipolar duality is equivalent to the equality of
the first order electric and magnetic Mie scattering coefficients:
a1 = b1. Particles with such properties have attracted attention,
particularly in the context of zero backscattering and the Kerker
conditions.47,49

The dipolar approximation ignores higher multipolar terms
which will, in general, break helicity preservation resulting in D̷
≠ 0. In the case of a sphere, such duality breaking terms can be
analytically computed using Mie theory (ref 26, Sec. 2). Figure
2a shows D̷ for a sphere as a function of radius and electric
permittivity. The figure shows a region of the parameter space
(r,ϵs) where the total relative helicity change due to all
multipolar terms is quite small (D̷ ≈ 10−3). Pairs of geometrical
and material properties for approximately dual spheres can be
extracted from this region. The calculations shown in Figure 2a
assume that the medium surrounding the spheres has ϵ =
(1.3)2. For a surrounding medium with a different relative
electric permittivity ϵ̅ , the same results will be obtained by

changing ϵs to ϵ ϵ̅/(1.3)s
2 while simultaneously changing the

radius r to ϵ̅r1.3 / .

We may use several dipolarly dual spheres to build composite
scatterers which preserve helicity to good approximation. For
optical activity, we also need the breaking of mirror symmetries,
which can be achieved by assembling spheres into a chiral
configuration, considered then the structure of interest. One
possible configuration is a tetrahedral arrangement of four
dipolarly dual spheres, like the one in the inset of Figure 2a. If
the four spheres in the tetrahedron have different electro-
magnetic responses, the arrangement in the inset of Figure 2a is
chiral. Figure 2b shows some of the available range of a1(b1)
coefficients for dipolarly dual spheres, which largely determine
their response. We have selected four spheres with parameters
indicated by the white circles in Figure 2a and blue circles in
Figure 2b.
Due to its chirality, the tetrahedral arrangement meets the

condition of breaking all mirror symmetries. As previously
discussed, the duality condition is only approximately met. In
order to gauge the effect of this approximation, we will compare
the design with two other different tetrahedral structures. One
is composed of four exactly dual (magnetic) spheres of different
sizes made with materials meeting eq 3: ϵ1 = μ1 = 16.00, ϵ2 = μ2
= 12.46, ϵ3 = μ3 = 9.95, and ϵ4 = μ4 = 8.12. The other one is
composed of dielectric spheres whose parameters set them far

Figure 2. Inset panel (a): A tetrahedral arrangement of four different spheres is a chiral object. If the spheres are chosen to be dipolarly dual
symmetric, we expect that the structure preserves helicity to good approximation for many incident/scattered directions. Such an object is designed
using the known necessary conditions for optical activity in general scattering directions. (a) Relative helicity change by an individual dielectric
sphere immersed in a medium with permittivity equal to (1.3)2. Equation 2 defines the relative helicity change of an arbitrary scatterer as the ratio
between the sum of the modulus square of all the helicity flipping scattering coefficients and the sum of the modulus square of all the scattering
coefficients. This measure of helicity change ranges from 0 to 1. The plot in panel (a) shows a region of very small helicity change. We design a chiral
and approximately dual tetrahedron made with four spheres with parameters indicated by the white circles and compare it to two other structures: A
chiral and nondual tetrahedron made with four spheres with parameters indicated by the black circles, and a chiral and perfectly dual tetrahedron
made with materials meeting ϵ = μ. (b) Electric a1 and magnetic b1 dipolar Mie scattering coefficients as a function of the sphere radius for the choice
of relative electric permittivity that minimizes the helicity change for each radius. As expected, such choice is very close to the dipolar duality
condition for spheres (a1 = b1). The blue circles mark the dipolar coefficient values of the four spheres in the approximately dual tetrahedron.

Table 1. Specification of the Spheres in Each of the Three Structures Analyzed in the Articlea

ϵ/μ helicity change (D̷)

positions radii DS ADS NDS DS ADS NDS

(1, 1, 1)[0.32/(3)1/2] 0.110 16.00/16.00 16.00/1 11.20/1 0 3e−4 0.186
(1, −1, −1) [0.32/(3)1/2] 0.124 12.46/12.46 12.46/1 16.19/1 0 6e−4 0.421
(−1, 1, −1)[0.32/(3)1/2] 0.138 9.95/9.95 9.95/1 6.97/1 0 1.0e−3 0.157
(−1, −1, 1)[0.32/(3)1/2] 0.153 8.12/8.12 8.12/1 10.56/1 0 2.0e−3 0.209

aDS stands for dual structure, ADS for approximately dual structure and NDS for non-dual structure. The different columns show, respectively, from
left to right, the positions of the spheres, their radii, their relative electric permittivity and magnetic permeability, and the total helicity change for
each individual sphere (see Figure 2a). The positions and radii are in units of wavelengths.
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away from the dipolar condition of eq 5. They are marked by
black circles in Figure 2a.
Table 1 contains the specification of the three structures and

includes the helicity change for each isolated sphere. For the
sake of conciseness, we will refer to the dual structure as DS, to
the approximately dual structure as ADS, and to the structure
made with spheres that severely break duality symmetry as
NDS, which stands for nondual structure. The permittivities of
the spheres in the proposed ADS are available at optical
frequencies. The intrinsically magnetic materials in the DS are
not. The DS is used in this article as an ideal reference for
comparison purposes.
The scattering matrix of each tetrahedron can be numerically

computed given the positions, radius, and material properties of
its composing spheres.40−43 We compute the scattering
matrices of the tetrahedrons to multipolar order 9, which
achieves sufficient convergence. These matrices encode all the
information about the electromagnetic properties of each
structure. Using them, we can calculate the total scattering cross
sections, which are 3.99 for the ADS, 4.46 for the NDS, and
4.08 for the DS, in units of the individual scattering cross
section of the sphere with parameters (r = 0.153, ϵ = 8.12, μ =
1). We can also compute their relative helicity change D̷, which
ranges from zero to one. The results are 0.0012 for the ADS,
0.2731 for the NDS, and of course, zero for the dual structure.
This confirms that the ADS preserves helicity to good
approximation.
We now analyze the optical activity of each structure. The

next section describes the analysis methodology.
We note that the use of the wavelength as the unit of length

for the radii and positions of the spheres in the tetrahedrons
renders the analysis and results independent of the specific
wavelength. In particular, the values of D̷ for a sphere (Figure
2a), the values of the total scattering cross sections and D̷ for
the tetrahedrons, and the optical activity results contained in
the next sections are wavelength independent. A change of
wavelength, that is, a change of the unit of length, rescales all
spatial dimensions accordingly. The results for the rescaled
structure will be the same as before (assuming the same
material parameters). The ability to realize the structure at a
given working wavelength depends on whether there exist
materials with the adequate electric permittivity at that
wavelength.

■ ANALYSIS METHODOLOGY

Given a scattering matrix in the basis of multipolar fields of
well-defined parity, the computation of the subscattering matrix
between two incident/scattered plane waves p/p̅ in the helicity
basis is straightforward (ref 50, eqs 11.4−6,8.4-(9,10)). After
such computation we obtain a 2 × 2 subscattering matrix for
each specified pair p/p̅

=̅
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p are helicity preserving coefficients for positive

and negative helicity, respectively, and ̅bp
p and ̅cp

p are helicity
flipping coefficients. These subscattering matrices encode the
polarization change in the helicity basis and correspond to the
Jones matrices in such basis. Their consideration simplifies the
analysis of optical activity.

For an incident linear polarization with angle (the way to
measure polarization angles is as follows: for a plane wave with
its momentum aligned with the z-axis, the zero of linear
polarization angle is assigned to the x-axis. For an arbitrary
plane wave with momentum p, the corresponding zero
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The angle of the major axis of the output polarization ellipse
is

θ = − + *̅ ̅ ̅F F
1
2

arg( ( ) ( ) )p
p
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p

(9)

We define the rotation angle β ̅
p
p as the difference between θ ̅

p
p

and αp:

β θ α= −̅ ̅
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The ellipticity of the output polarization can be defined as
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where ̅Ap
p and ̅Bp

p are the major and minor axis of the ellipse.
This measure of ellipticity takes the extreme values of 1 for a
linearly polarized output and zero for a circularly polarized
output.
It can be shown that the ellipticity η ̅

p
p can be computed as
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In general, β ̅
p
p and η ̅

p
p depend on αp. By varying αp in eqs 10

and 11, we obtain the functions β α̅( )p
p

p and η α̅( )p
p

p . Crucially,

it can be shown that β α̅( )p
p

p is independent of αp if and only if

= =̅ ̅b c 0p
p

p
p , that is, when helicity is preserved.17 In such case,

η α̅( )p
p

p is independent of αp as well. The Supporting

Information contains these brief derivations, complementing
those in ref 17 with the treatment of ellipticity.
Consequently, optical activity for the p/p̅ directions requires
= =̅ ̅b c 0p

p
p
p . In the DS, duality symmetry implies = =̅ ̅b c 0p

p
p
p

for all p/p̅, and β ̅
p
p and η ̅

p
p are independent of αp for all p/p̅.

We may expect the ADS to deviate slightly from this optimal
situation and the NDS to have a large deviation. To measure
these deviations we define βΔ ̅

p
p and ηΔ ̅

p
p as the length of the

range covered by β α̅( )p
p

p and η α̅( )p
p

p as αp varies, that is, their

peak to peak variation. We also define the average rotation β ̂ ̅
p
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and ellipticity η ̂ ̅
p
p as the average of β α̅( )p

p
p and η α̅( )p

p
p as αp

varies. Figure 3 contains examples of different β α̅( )p
p

p behaviors
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taken from actual data. The consideration of the polarization
transformation as optical activity becomes less adequate as βΔ ̅

p
p

increases.

■ DISCUSSION OF THE NUMERICAL RESULTS
Following the methodology of the previous section, we

compute β η̂ ̂̅ ̅,p
p

p
p, βΔ ̅

p
p, and ηΔ ̅

p
p for all possible pairs p/p̅ on

a double grid sampling the continuum of spatial directions in
steps of 4.5° in the polar coordinate and 9° in the azimuthal
coordinate. The total number of pairs is (180/4.5 × 360/9)2 =
16002. All angular quantities are in degrees.
In Figure 4, each plot shows the statistics from a reduced set

of p/p̅ pairs containing the stronger scattering pairs. Figure 4a
contains all the cases. In Figure 4b the weaker p/p̅ pairs are
excluded, which together add up to 5% of the total scattering
cross section. In Figures 4b,c, this threshold is 50 and 90%,
respectively. In other words, Figure 4d shows the data for the
stronger scatterer pairs which, together, add up to 10% of the
total scattering cross-section and, similarly, for the other plots.
The percentages of p/p̅ cases kept by the 5−50−90 filtering is
54−12−1.25 for the ADS, 68−18−2.0 for the NDS, and 56−
13−1.4 for the DS. The results of Figure 4a−d show that the

three structures have nonzero average rotation angles β ̂ ̅
p
p
for

many scattering pairs. Even though the histograms change as
the threshold increases, for example, some features disappear,

the dispersion of β ̂ ̅
p
p
values is still quite large even in Figure 4d.

The data shows that the nonzero β ̂ ̅
p
p
values are not limited to

weakly scattering p/p̅ cases. The occurrence of different β ̂ ̅
p
p

values is consistent with the fact that there is no reason to

expect a single β ̂ ̅
p
p
value for all p/p̅ in any of the three

structures.
Figure S3a−d in the Supporting Information contains the

histograms for the average ellipticity η ̂ ̅
p
p. The values of η ̂ ̅

p
p are

shifted toward large values, and this shift is more pronounced as
the scattering threshold increases. This indicates that, upon
incident linear polarization, the outputs are much closer to
being linearly polarized (η = 1) than circularly polarized (η =
0).
The statistics of βΔ ̅

p
p in Figure 5a,b allow us to judge whether

the nonzero average rotation angles from Figure 4a−d can be
meaningfully considered as optical activity, or not, according to
the previous discussions. The ideal result is a step function
rising at βΔ ̅

p
p = 0. This is achieved by the DS (not shown in the

figures). For the ADS and NDS structures, the polarization
transformations that occur in the scattering direction pairs p/p̅

Figure 3. Output rotation angle β ̅
p
p as a function of the incident

polarization angle α ̅
p
p for four cases occurring in the analyzed

structures. All angular quantities are in degrees. Optical activity implies
a flat line β α∂ ∂ =̅ ̅/ 0p

p
p
p . For the continuous red and short-dashed blue

cases, where the peak to peak variation of β ̅
p
p is small, the polarization

transformation may be considered a rotation by a fixed angle, akin to
optical activity (see Figure 1b). When βΔ ̅

p
p is large, as in the dotted

black and long-dashed magenta examples in the figure, such

consideration is much less adequate. The β ̂ ̅
p
p
in the legend correspond

to the average rotation in each case. The first two cases have been
extracted from the ADS data. The polar and azimuthal angles defining
their p/p̅ vectors are (13.5,0.0)/(40.5,180.0) and (13.5,279.0)/
(148.5,216.0). The second two cases have been extracted from the
NDS data. They correspond to the pairs (126.0,9.00)/(67.5,117.0)
and (9.0,351.0)/(108.0,243.0). The four exemplary cases have been
chosen to clearly illustrate small and large βΔ ̅

p
p. The sphere positions

in Table 1 fix the orientation of the structures with respect to the
coordinate axes where angles are measured.

Figure 4. (a−d) Histograms of β ̂ ̅
p
p
, the rotation angle averaged over

the incident linear polarization angle α ̅
p
p for fixed p/p̅ for the DS,

ADS, and NDS. All angular quantities are in degrees. The figures show
aggregated data for all the p/p̅ pairs in a double grid of incident/
scattered directions sampled in steps of 4.5° in the polar coordinate
and 9° in the azimuthal coordinate. The total number of pairs is (180/
4.5 × 360/9)2 = 16002. Panel (a) contains all data. (b, c, and d)
Weaker scattering pairs p/p̅ that together add up to 5, 50, and 90% of
the total scattering cross section have been excluded. The X(Y)
notation indicates that for a scattering threshold at X%, Y% of the total
p/p̅ pairs are kept. The results are discussed in the text.
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are closer to optical activity for smaller values of βΔ ̅
p
p and

sharper rises of the cumulative histograms. The results clearly
show the difference between the ADS (Figure 5a) and the NDS
(Figure 5b) in this respect. For the ADS, 95% of the pairs have
a βΔ ̅

p
p smaller than 43.5, 10.3, 3.5, and 2.6°, respectively, as the

threshold increases (note the logarithmic scale in the horizontal
axis). For the NDS, the jumps in the rightmost bins of the plots
indicate that a portion of the p/p̅ pairs have βΔ ̅

p
p > 180°, which

we set to βΔ ̅
p
p = 180° in the statistics. These cases are similar to

the magenta case in Figure 3. For the first three thresholds (0−
5−50), the 95th percentile of βΔ ̅

p
p lies beyond βΔ ̅

p
p = 180 in

the NDS. When the threshold discards the weaker scatterers
adding up to 90% of the total scattering, the 95th percentile of

βΔ ̅
p
p is 16.7°, compared to 2.6 for the ADS. Figure 5a,b shows

that the NDS exhibits a huge deviation with respect to the ideal
case and that the ADS approaches the ideal optical activity
performance of the DS reasonably well. Figure S3e,f in the
Supporting Information shows the cumulative histograms for
the variation in ellipticity ηΔ ̅

p
p, which are in line with this

conclusion. The 95th percentiles for ηΔ ̅
p
p in the ADS structure

are 0.46, 0.14, 0.03, and 0.01, and in the NDS 0.91, 0.91, 0.89,
and 0.33. The ideal result is ηΔ ̅

p
p = 0, achieved by the DS.

The results match the expectations. In sharp contrast to the
NDS case, the polarization transformation in many of the
scattering pairs of the ADS meets the definition of optical
activity to a very good approximation. For example, let us take
the data for all the p/p̅ pairs adding up to the 95% of the total
scattering (which is 54% of the total number of pairs); only 5%
of those cases have a βΔ ̅

p
p larger than 5.5°. This is quite

different in the NDS case. For the same scattering threshold
(which keeps 68% of the total number of pairs), βΔ ̅

p
p is larger

than 5.5° in 89% of the cases.
Figure 5a shows that the polarization transformations

effected by the ADS can, in many cases, be meaningfully
considered optical activity. Finally, Figure 6 shows that the ADS
produces optical rotation in forward and nonforward scattering
directions. The four figures contain the scatter plots of the

average rotations β ̂ ̅
p
p
versus the angle formed by the incident

and scattered directions ψ = ̅̅ p pangle( , )p
p for the four settings

of the scattering threshold. The observed range of optical
rotation angles is maximal (±90°) for many scattering angles
ψ ̅

p
p. In forward scattering, the range is reduced to ±0.5° when

the scattering threshold is 5, 50, or 90. We attribute this effect
to the already discussed fact that, while any other scattering
direction requires the breaking of a single plane of symmetry,
optical activity in forward scattering requires the breaking of all
mirror planes of symmetry containing the optical axis, resulting
in more chances that the symmetry is only weakly broken for
one of them.
These results confirm and highlight the importance of

helicity preservation in optical activity and show that this design
requirement can be addressed with the use of approximately
dual structures, achieving optical activity in general scattering
directions.

■ CONCLUDING REMARKS
In summary, optical activity in general scattering directions can
be achieved by chiral structures that, additionally, have
electromagnetic duality symmetry. At frequency ranges where
dual symmetric materials are not available, like the optical one,
chiral and approximately dual structures can be devised using
small scatterers whose dipolar response is dual symmetric. We
have shown that this design strategy allows to address the
requirement of helicity preservation, necessary for optical
activity, and results in structures that exhibit optical activity in
general scattering directions.
Structures such as the one studied in this article are suitable

building blocks for macroscopic objects exhibiting optical
activity in general scattering directions. For example, a two-
dimensional array of copies of the presented structure should

Figure 5. (a, b) Cumulative histograms of βΔ ̅
p
p, the peak to peak

variations of the rotation angle for the ADS and NDS, respectively.
The plots contain data for the different settings of the scattering
threshold (see the text or the legend of Figure 4). Note the logarithmic
scale in the horizontal axis. The values of βΔ ̅

p
p are significantly smaller

in the ADS (a) than in the NDS (b). The results are further discussed
in the text.

Figure 6. Scatter plots of average rotation β ̂ ̅
p
p
vs the angle formed by

the incident and scattered directions ψ = ̅̅ p pangle( , )p
p for the ADS.

All angular quantities are in degrees. (a−d) Data for the four settings
of the scattering threshold (see the text or the legend of Figure 4). For
the sake of clarity, the number of points in each plot is limited to 2500
by random down sampling. The plots show that the ADS produces
optical rotation in general scattering directions.
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exhibit optical activity in both reflection and transmission at
oblique incidence.
Electromagnetically small single objects that are chiral and

dipolarly dual exist at microwave frequencies.51 Obtaining them
at optical frequencies would offer an alternative to achieving
chirality by the spatial arrangement of nonchiral objects.
We believe that the consideration of the electromagnetic

duality symmetry is a valuable addition to the research in
optical activity, for both its fundamental and practical sides.
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